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Summary 

The DELTA Method is a distribution-free decision analysis method for the handling and eval-

uation of decision and risk trees (Danielson, 1997). It has thereafter in 2001-2002 been extended 

from probabilistic decision situations also to cover decisions under multiple criteria. Decision 

alternatives are evaluated by so-called contractions of the intervals combined with several com-

plementary evaluation rules. The advantage of a distribution-free approach is the generality and 

freedom from assumptions that it allows. However, a disadvantage is the unintuitive interpre-

tation of the results of a contraction. In order to alleviate that problem, an additional analysis 

method is introduced in this report, based on a belief mass interpretation of the output intervals 

from DELTA. Each input and output interval consists of a lower bound, an upper bound, and a 

focal point. These three points are interpreted as parameters for belief distributions (Dirichlet 

distributions for probabilities and criteria weights, triangle distributions for values). 

Decision Analysis Background 

This section is built on (Danielson, 1997), which describes the DELTA Method for interval 

decision analysis that was later generalised to multi-level trees (the original text handles only 

single-level trees, but the generalisation is straightforward and does not introduce any new con-

cepts). Decisions under risk (probabilistic decisions) are often given a tree representation. This 

is the reading of the tree as a sequence of events leading up to the final consequences, the end 

nodes. As an example, consider the tree in Figure 1, a screenshot from the software DecideIT, 

built on the representation and evaluation algorithms in (Danielson, 1997) by the company 

Preference AB (www.preference.nu).  

 

  Figure 1  A two-level decision tree from DecideIT 

http://www.preference.nu/
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A decision tree consists of a root node, representing a decision, a set of intermediary (event) 

nodes, representing some kind of uncertainty about which event will eventually occur, and con-

sequence nodes, representing possible final outcomes. Usually, probability distributions are as-

signed in the form of weights in the probability nodes as measures of the uncertainties involved. 

The informal semantics are simply that given that an alternative Ai is chosen, there is a proba-

bility pij that an event occurs. This event can either be a consequence with a value vijk assigned 

to it or another event. Usually, the maximisation of the expected value is used as an evaluation 

rule. For instance, in Figure 1 above, the expected value of alternative Ai is 

 

In case of precise probability and utility assessments, this is straightforwardly evaluated. How-

ever, when the probabilities and utilities are imprecise, several complications appear, including 

the non-uniqueness of the expected value of an alternative (leading to the need to find upper 

and lower bounds). The first step in obtaining a solution is generalising the decision tree struc-

ture. 

Representation 

Let a decision frame represent a tree decision problem. This is convenient for presentational 

purposes. The idea with such a frame is to collect all information necessary for the model in 

one structure. One of the building blocks of a decision frame is a graph. 
 

A graph is a structure I,N,E, where I is an index set, N is a set {ni}, iI, of nodes, and E is a 

set {(ni,nj)}, i,jI, ij, of edges (node pairs). A tree is a connected graph without cycles. 
 

An r-tree (rooted tree) is a tree I,N,E,r where exactly one node nr has the property 

 k : (nk,nr)E. nr is called the root of the tree. The set N is partitioned into two subsets of 

leaf nodes (NL) and intermediate nodes (NI). ni  NI iff  k : (ni,nk)E. Since NL = N \ NI, 

niNL iff  k : (ni,nk)E. The index set I is partitioned accordingly: an index iII iff niNI 

and an index iIL iff niNL. An intermediate node niNI has children indices 

Ci = {j : (ni,nj)E}. 
 

Then, all the rooted trees representing alternatives are joined together into a decision frame. In 

the sequel, the notation is used that the n children of a node xi are denoted, xi1, xi2,…,xin and the 

m children of the node xij are denoted xij1, xij2,…,xijm, etc.  
 

Decision-maker statements of probability and value are translated into constraints (inequali-

ties) in order to be entered into the decision problem. Range statements (i.e. intervals) translate 

into range constraints, inequalities involving a single variable. A reasonable interpretation of 

such statements is that the estimate is not outside of the given interval. For a value scale [a,b], 

there is a default range constraint vij[a,b] for each value variable. Likewise, there is a default 

range constraint pij[0,1] for each probability variable (although, in practice, the normalisation 
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takes care of this). Comparative statements compare the probabilities of two consequences oc-

curring with one another, such as “the events C1 and C2 are equally probable” or “the event C3 

is more likely to occur than C4”. Those statements are translated into comparative constraints, 

inequalities involving more than one variable. The term interval constraints is used for the 

kinds of constraints above. A collection of interval constraints concerning the same set of var-

iables is called a constraint set, and it forms the basis for the representation of decision situation 

statements. 
 

Given an index set I and a set of variables {xi}iI, a constraint set in {xi}iI is a set of interval 

constraints in {xi}iI. 
 

Initially, it is important to determine whether the elements in a constraint set are at all compat-

ible with each other. This is the question of whether a constraint set has a solution, i.e. if there 

exists any vector of real numbers that can be assigned to the variables. 
 

Given an index set I and a set of variables {xi}iI, a constraint set X in {xi}iI is consistent iff 

the system of weak inequalities in X has a solution. Otherwise, the constraint set is inconsistent. 

A constraint Z is consistent with a constraint set X iff the constraint set {Z}  X is consistent. 

The collection of all consistent instances of a constraint set X is called the solution set to X. 
 

Given an index set I and a consistent constraint set X in {xi}iI and a function f, the maximum 

is Xmax(f(x)) =def  sup(a  {f(x) > a}  X is consistent). In a similar way, the minimum is 
Xmin(f(x)) =def  inf(a  {f(x) < a}  X is consistent). 
 

Given an index set I, a consistent constraint set X in {xi}iI and a function f, Xargmax(f(x)) is a 

solution vector that is a solution to Xmax(f(x)), and Xargmin(f(x)) is a solution vector that is a 

solution to Xmin(f(x)). 
 

Note that argmax and argmin need not be unique. The feasible box (i.e., the set of feasible 

variable assignments) can be calculated if the constraint set is consistent. The feasible box is a 

concept that in each dimension signals which parts are infeasible within the constraint set. In-

tuitively, the feasible box represents a conservative extension of the solution set of a set of 

constraints. 
 

Given an index set I and a consistent constraint set X in {xi}iI, the set of optimum pairs 

{Xmin(xi),
Xmax(xi)}iI is the feasible box of the set and is denoted Xmin(xi),

Xmax(xi)I. 

 

This feasible box represents upper and lower probabilities if X consists of probabilities and 

upper and lower values if X consists of values. For convexity reasons, the entire interval be-

tween those extremal points is feasible. Using this concept, an application program can display 

to the user which statements are incompatible or which parts of intervals are incompatible with 

the rest of the statement set. Hence, at all times, an application program can maintain a con-

sistent model of the user's problem in collaboration with the user. 
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Probability and Value Constraint Sets 

There are two types of constraint sets (c-sets), probability c-sets and value c-sets. The smallest 

c-set unit is the event node c-set, which collects all probability statements made regarding a 

specific event node in an r-tree. 
 

Given an r-tree T = I,N,E,rand an event node ni, consider the set Ci of disjoint and exhaustive 

consequences of the event (children nodes), user event statements in {pj}jCi, and a discrete, 

finite probability mass function :nj[0,1] over Ci. Let pj denote the function value (nj).  

obeys the standard probability axioms, and thus pj[0,1] and j pj = 1 are default constraints. 

Then the event node c-set Pi is derived from the set of user range and comparative statements 

with the following content. 

 A feasible box ak,bk, kCi, which represents the user and default range constraints 

: [0,1]i kk C p   . 

 All user comparative constraints. 

 The normalisation constraint 1
i

k

k C

p


 . 

Thus, the c-set transforms statements into linear constraints while maintaining the same mean-

ing. A c-set is more convenient to handle than a pure set of statements. An event node c-set is 

characterising a set of discrete probability distributions. The next aggregation level is that of a 

probability c-set, which collects together all probability statements belonging to all nodes in the 

same tree. 
 

Given an r-tree T = I,N,E,r with all event nodes ni, iII. Then the probability c-set P is all 

event c-sets Pj combined, i.e. feasible boxes, normalisations, and user comparative statements.  

Requirements similar to those for probability variables are found for value variables. There are 

apparent similarities and differences between probability and value statements. The normalisa-

tion (k pik = 1) requires the probability variables of an intermediate node to sum to one. No 

such constraint exists for the value variables. Further, the value scale endpoints can be arbitrar-

ily selected and need not be [0,1] as in the probability case. 
 

Given an r-tree T = I,N,E,r, consider the set NL of leaf nodes. Then a value c-set is derived 

from the set of user range and comparative statements. The user statements, together with the 

default statements : [0,1]L

kk I v   , form the c-set constraints in the following way. 

 A hull ak,bk, kIL, which represents the user and default range constraints. 

 All user comparative constraints. 
 

Similar to probability c-sets, a value c-set is characterising a set of value functions. The state-

ments are transformed into a set of linear constraints. Using the above concepts of constraint 

and c-set, a decision situation is modelled by a decision frame. To begin with, each alternative 

is represented by a tree frame. 
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Given a decision alternative, statements are made about the probabilities of the events as well 

as the values of the consequences. A tree frame is a structure T,P,V containing the follow-

ing representation of the alternative: 

 A rooted tree T = I,N,E,r with index set partitions II and IL, and, for each iII, the 

child index set Ci. 

 A probability c-set P in variables {pi}, iI\{r}, representing all probability statements 

in the form of a feasible box and constraints. 

 A value c-set V in variables {vi}, iIL, representing all value statements in the form of 

a feasible box and constraints. 
 

All alternatives are modelled in the same structure. This structure (the decision frame) fully 

represents the entire decision problem, and all evaluations are made relative to it. The proba-

bility and value c-sets, together with structural information, constitute the decision frame. 
 

Given a probabilistic decision situation with m alternatives, a decision frame is a structure 

m,F, F = {Fi} for i{1,...,m}, where Fi = Ti,Pi,Vi is a tree frame for alternative Ai. Thus, the 

decision frame contains , for each alternative, a decision tree structure and a tree frame. 

Evaluation Algorithms 

Now that the representation structure is defined, the next item is algorithms for computing upper 

and lower bounds for the expected value in the tree, i.e. optimisation of sums of products de-

rived from the tree structure. The primary evaluation rule is based on the expected value. Since 

neither probabilities nor values are fixed numbers, evaluating the expected value yields multi-

linear objective functions (with bilinear functions as a special case for one-level trees). Evaluate 

the expected value of an alternative given a decision frame m, {Ti,Pi,Vi}, i.e. 

EV(Ai) = 
0 2 11

1 1 2 1 2 2 1 1 2 2 1 1 2 2 1

1 2 1

1

1 1 1 1

... ... ... ...
i i ii m m

m m m m m m m m

m m

n n nn

ii ii i ii i i i ii i i i i ii i i i i

i i i i

p p p p v
 

     

   

    ,  

where ... ...jip , j{1,…,m} denote probabilities in Pi and ... ...1jiv  denote values in Vi. Optimisation 

of such non-linear expressions subject to linear constraints (the probability and value constraint 

sets) are described in (Danielson, 1997).  

The contraction is a generalised sensitivity analysis to be carried out in an arbitrary number of 

dimensions. In non-trivial decision situations, when an information frame contains numerically 

imprecise information, the different principles suggested above are often too weak to yield a 

conclusive result. Often, a far too crowded set of candidates is received. One way to proceed 

could be to determine the stability of the relation between the consequence sets under consid-

eration. A natural way to investigate this is to consider values near the boundaries of the inter-

vals as being less reliable than more central values due to interval statements being deliberately 

imprecise. This is takne into account by measuring the dominated regions indirectly using the 

concept of contraction. 
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The principle of contraction is motivated by the difficulties of performing simultaneous sensi-

tivity analysis in several dimensions at the same time. It can be hard to gain a real understanding 

of the solutions to large decision problems using only one-dimensional analyses since different 

combinations of dimensions can be critical to the evaluation results. Investigating all possible 

such combinations would lead to a procedure of high complexity in the number of cases to 

investigate. Using contractions, this difficulty is circumvented. The contraction avoids the com-

plexity inherent in combinatorial analyses. However, it is still possible to study the stability of 

a result by gaining a better understanding of how important the interval boundary points are. 

By co-varying the contractions of an arbitrary set of intervals, it is possible to gain much better 

insight into the influence of the structure of the information frame on the solutions. Both the set 

of intervals under investigation and the scale of individual contractions can be controlled. Con-

sequently, a contraction can be regarded as a focus parameter that zooms in on central sub-

intervals of the full statement intervals.  
 

X is a base with the variables x1,…,xn, π  [0,1] is a real number, and {πi  [0,1] : i = 1,…,n} 

is a set of real numbers. [ai, bi] is the interval corresponding to the variable xi in the solution set 

of the base, and k  = (k1,…,kn) is a consistent point in X. A π-contraction of X is to add the 

interval statements {xi  [ai+π·πi·(ki–ai), bi–π·πi·(bi–ki)] : i = 1,…,n} to the base X. k  is called 

the contraction point (or focal point). 

By varying π from 0 to 1, the intervals are decreased proportionally using the gain factors in 

the πi-set, thereby facilitating the study of co-variation among the variables. This is a form of 

sensitivity analysis, which is described in more detail in (Danielson, 1997). It is implemented 

in the tool DecideIT, from which Figure 2 is taken. It shows the comparison of expected values 

between two alternatives. In the figure, the contraction progresses from left (0%) to right 

(100%), where the original intervals are reduced to single numbers at the contraction point k .  

 

Figure 2  Contraction graph in DecideIT 

At 60% contraction, the intervals have shrunk to the extent that there is no longer any consistent 

assignment of variables that make the lower alternative a feasible choice. This represents the 
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state-of-the-art in interval decision analysis at the time of writing (2012). However, the com-

pany that commissioned this research task had a desire for a sensitivity analysis method that 

keeps the complete intervals in the analysis process. This research question led to the BEDA 

method. 

 

The BEDA Method 
 

A key observation in the DELTA method is that the belief in points closer to the endpoints of 

the intervals is lower than the belief in more central points. This is the reason for the contraction 

procedure above. The same observation underlies the BEDA method, but it is effectuated dif-

ferently – by assigning explicit distributions of belief on the intervals. The distributions used 

for expressing beliefs are well-known distributions from statistics: the Dirichlet distribution for 

probabilities (since they need to sum to one following Kolmogorov's axiom system) and the 

triangle and uniform distributions for utilities/values, the choice depending on whether there 

are two or three points defining an interval. The properties of both Dirichlet and triangle distri-

butions are well described in (Kotz & van Dorp, 2004). In this document, the evaluation of such 

distributions will be discussed. 
 

Begin by revisiting the expression for the expected value: 
 

EV(Ai) = 
0 2 11

1 1 2 1 2 2 1 1 2 2 1 1 2 2 1

1 2 1

1

1 1 1 1

... ... ... ...
i i ii m m

m m m m m m m m

m m
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ii ii i ii i i i ii i i i i ii i i i i

i i i i

p p p p v
 

     

   

    ,  

To evaluate this expression, and thus arrive at an analysis of the decision situation, employ 

calculation methods for the two operators addition and multiplication. The addition operator is 

handled by ordinary convolution, i.e. if h is the distribution over a sum z = x + y whose compo-

nents have distributions f(x) and g(y), then h(z) is 

ℎ(𝑧) =
𝑑

𝑑𝑧
∫ 𝑓(𝑥)𝑔(𝑧 − 𝑥)𝑑𝑥

𝑧

0

. 

The multiplication operator is treated analogously. Using the same assumptions as above, if h 

is the distribution over a product z = x ∙ y, h(z) is found by letting 

𝐻(𝑧) = ∬ 𝑓(𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦 = ∫ ∫ 𝑓(𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦 = ∫ 𝑓(𝑥)𝐺(𝑧 𝑥⁄ )𝑑𝑥
1

𝑧

𝑧 𝑥⁄

0

1

0
𝛤𝑥

 

where G is a primitive function to g, Γz = {(x,y) | x∙y ≤ z}, and 0 ≤ z ≤ 1. Then h(z) is the 

corresponding density function 

ℎ(𝑧) =
𝑑

𝑑𝑧
∫ 𝑓(𝑥)𝐺(𝑧 𝑥⁄ )𝑑𝑥

1

𝑧

= ∫
𝑓(𝑥)𝑔(𝑧 𝑥⁄ )

𝑥
𝑑𝑥

1

𝑧

. 

In theory, the products are calculated and the abovementioned convolution of two densities then 

effectuates the summations of the products. This combination of operators computes the distri-

bution over the expected utility. In practice, however, these calculations are very complicated 

for a decision-analytic tool to carry out, especially when additional requirements are added, 
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such as asymmetry in the input distributions and truncated distributions due to the input inter-

vals being narrower than the default [0, 1] range assumed in the standard theory. 
 

The evaluation method in BEDA is based on the principle of going concern (PGC). It is the 

same PGC observation that enables the use of probability theory as a risk calculus. The proba-

bility of an event occurring is the proportion of times it occurs if the event is repeated an infinite 

number of times. In using probabilities for modelling real-life events, the approximation is used 

that the probability best represents the risk involved. For this approximation to be reasonable, 

several events need to take place for the real-world outcomes to cancel out in the sense that 

they, on average, tend to the probability. This is the assumption of going concern, and the ap-

proximation is viable in most decision situations, which is why probability calculus is accepted 

for use in this way. The same PGC reasoning applied to distributions involves the central limit 

theorem and law of large numbers in statistics. This leads to the well-founded approximation 

that the total distribution of expected value over a large number of decision situations will tend 

to the normal distribution. Using this approximation, the evaluation in the BEDA method 

amounts to finding parameters for a suitable approximately normal distribution. Two factors 

slightly complicate matters. i) The input distributions are seldom symmetric in the sense that 

their mean values are not midway between the lower and upper boundaries of the intervals. And 

even if they were, the multiplication operator's non-linearity still yields an asymmetric result. 

ii) The lower and upper bounds themselves introduce truncations into the resulting distributions, 

leading to non-standard outcomes.  
 

This eventually turns the BEDA evaluation into a moment calculus using the NEMO (net mo-

ment) technique. NEMO includes all moments that have noticeable impact on the end result 

and excludes those that have negligible impact to save computation time. This entails that no 

moments higher than three are considered for the calculations. 

Skew-normal Distribution 

The skew-normal distribution is a continuous probability distribution that generalises the nor-

mal distribution to allow for non-zero skewness.  

Let  denote the standard normal probability density function 

 

with the cumulative distribution function given by 

 

where erf(·) is the error function. Then the probability density function of the skew-normal 

distribution is given by 
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where α is the shape parameter, φ is the standard normal density, and Φ its cumulative distri-

bution function. To add location and scale parameters, transform 

.  

When α = 0 the result is the standard normal distribution. When α = 1 it models the distribution 

of the maximum of two independent standard normal variates. When the shape parameter's 

absolute value increases, the distribution's skewness increases. The limit as | α | → ∞ results in 

the folded normal distribution or half-normal distribution. The distribution is right-skewed if 

α > 0 and left-skewed if α < 0. When α changes its sign, the density is reflected about x = 0. 

The skew-normal density function with location ξ, scale ω, and shape parameter α is 

 

The probability density function is 

 

The cumulative distribution function is 

  

where T(h, a) is Owen’s T-function. T(h, a) is defined by 

 

T(h, a) gives the probability of the event (X > h and 0 < Y < a·X) where X and Y are independent 

standard normal random variables. 

Mean of the skew-normal distribution: 

   

where   

 

Variance of the skew-normal distribution: 
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Truncated Distributions 

The truncated (skew-)normal distribution is the probability distribution of a (skew-)normally 

distributed random variable whose value is either bounded from below, from above, or both. 

Without loss of generality, suppose that 

 

has a normal distribution and lies within the interval 

.  

Then X conditional on a < X < b has a truncated normal distribution. Its probability density 

function, ƒ, for a ≤ x ≤ b, is given by 

 

and by ƒ = 0 otherwise. 

Here,  is the probability density function of the standard normal distribu-

tion and  is its cumulative distribution function. 

Two sided truncation: 

 
 

 

One sided truncation (upper tail): 

 
 

 

where  

 

and 

. 

One sided truncation (lower tail): 
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where  

 

Moments 

In BEDA, the NEMO (net moment) calculus determines the output distributions. The nth mo-

ment of a real-valued continuous function f(x) of a real variable about a value c is 

 

The function f(x) is a probability density function. The nth moment about zero of a probability 

density function f(x) is the expected value of X
 n

 and is called the raw moment (c = 0). The 

moments about its mean are called central moments (c = μ where μ is the mean value). These 

describe the shape of the function independently of translation. 

If f is a probability density function, then the value of the integral above is called the nth moment 

of the probability distribution. If F is a cumulative probability distribution function of any prob-

ability distribution, then the nth moment of the probability distribution is given by the Riemann-

Stieltjes integral 

 

where X is a random variable that has this cumulative distribution F and E[ ] is the expectation 

operator. 

Central Moments 

The kth central moment of a real-valued random variable X is μk = E[(X − E[X])k] where E is the 

expectation operator. For a continuous probability distribution with probability density function 

f(x), the central moment about the mean μ is 

 

The nth central moment is translation-invariant for all n > 0, i.e. for any random variable X and 

any constant c 

 

For all n, the nth central moment is homogeneous of degree n 
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The additivity property for independent random variables X and Y is 

 

The corresponding formulas for the fourth and fifth central moments are 

μ4(X + Y) = μ4(X) + μ4(Y) + 4 μ3(X) μY + 4 μX μ3(Y) + 6 σ2
X σ2

Y  
 

μ5(X + Y) = μ5(X) + μ5(Y) + 5 μ4(X) μY + 5 μX μ4(Y) + 10 μ3(X) σ2
Y + 10 μ3(Y) σ2

X. 

The lower central moments have the following interpretations: 

 The first central moment μ1 is zero. 

 The second central moment μ2 is the variance, denoted σ2, where σ is the standard 

deviation. 

 The third central moment μ3 is denoted ϣ and is used to define the third standard-

ised moment γ1 which is called skewness. 

 The fourth central moment μ4 is denoted Ϧ and is used to define the fourth stand-

ardised moment γ2 which is called kurtosis. 

 The fifth central moment μ5 is used to define the fifth standardised moment which 

is called hyperskewness. 

The standardised moment is the central moment divided by the standard deviation of the same 

power as its number, i.e. μn  ⁄ σn for the nth moment. 

Moment Raw moment Central moment Standardised moment 

1 μ or E[X]  (mean) 0 0 

2 μ2' or E[X2] μ2 or σ2  (variance) 1 

3 μ3' or E[X3] μ3 or ϣ γ1  (skewness) 

4 μ4' or E[X4] μ4 or Ϧ γ2  (non-excess kurtosis) 

5 μ5' or E[X5] μ5 ζ1  (hyperskewness) 

Table 1: Raw, central, and standardised moments 

The relations between the central moments μn and raw moments μn' are 

 

and vice versa 
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Variance 

If a random variable X has the expected value μ = E[X], then the variance of X is 

 

It can be expanded as follows: 

 

If the random variable X is continuous with probability density function f(x), then the variance 

equals the second central moment given by 

 

where μ is the expected value 

 

and where the integrals are definite integrals taken for x over the range of X. 

The variance is invariant with respect to changes in the location or scale parameter.  

 

 

The variance of a sum of two random variables is given by 

 

and in general, for the sum of N random variables, the variance is 

 

The variance of a finite sum of uncorrelated (not necessarily independent) random variables is 

equal to the sum of their variances. This stems from the above identity and the fact that for 

uncorrelated variables the covariance is zero. 
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These results lead to the variance of a linear combination as 

 

If all variables have the same variance σ2 then, since division by n is a linear transformation, 

this implies that the variance of their mean is 

 

If the variables are correlated, then the variance of their sum is the sum of their covariances. 

 

The scaling property plus the covariance property Cov(aX, bY) = ab·Cov(X, Y) jointly imply 

that 

 

The expression above can be extended to a weighted sum of multiple variables. 

 

If X and Y are two random variables and the variance of X exists, then 

 

If two variables X and Y are independent, the variance of their product is 

 

The variance of the product of two random variables X and Y in general is 
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Var(XY) = E(X 2Y 2) – [E(XY)]2 

where the expressions are expanded as  

E(X 2Y 2) = Cov(X 2,Y 2) + E(X 2) E(Y 2) 

and  

[E(XY)]2 = [Cov(X,Y) + E(X) E(Y)]2. 

Thus, Var(XY) of two possibly dependent random variables X and Y can be expressed as  

Var(XY) = Cov(X 2,Y 2) + [Var(X) + [E(X)]2]⋅[Var(Y) + E[(Y)]2]  

− [Cov(X,Y) + E(X) E(Y)]2. 

If the random variables X and Y are independent, i.e. Cov(X 2,Y 2) = Cov(X,Y) = 0, the expression 

reduces to  

[Var(X) + [E(X)]2] ⋅ [Var(Y) + [E(Y)]2] − [E(X) E(Y)]2 

and the two [E(X) E(Y)]2 terms cancel out yielding  

Var(X) Var(Y) + Var(X) [E(Y)]2 + Var(Y) [E(X)]2 

which leads back to the expression for independent products above.  

These additive and multiplicative properties of the second central moment yield expressions for 

the variance in decision and risk trees. This variance is then matched to the B-normal distribu-

tion that is derived from the skew-normal distribution below and calculated by NEMO. 

Covariance 

The covariance between two jointly distributed real-valued random variables X and Y with finite 

second moments is defined as the expected product of their deviations from their individual 

expected values 

 

where E[X] is the expected value of X. By using the linearity of expectations, this can be sim-

plified to 

 

For several random variables having the same parent node, there are a larger number of covar-

iances. These are more easily collected in matrix form. For random vectors X ∈ R
m

 and Y ∈ R
n
, 

the m × n covariance matrix is 
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where YT is the transpose of Y. The (i, j)-th element of this matrix is equal to the covariance 

cov(Xi, Yj) between the i-th scalar component of X and the j-th scalar component of Y. By sym-

metry, cov(Y, X) is the transpose of cov(X, Y). Using a matrix form simplifies the handling of 

covariances. 

Skewness 

The skewness γ1 of a random variable X is the third standardised moment 

 

where μ3 is the third central moment, σ is the standard deviation, and E[ ] is the expectation 

operator. 

The formula expressing skewness in terms of the raw moment E[X 3] is derived as follows: 

 

If two variables X and Y with third central moments ϣX and ϣY are independent, it follows from 

the additivity property that the third central moment ϣX+Y of their sum X+Y is 

ϣX+Y = ϣX + ϣY. 

The third central moment ϣXY of their product XY is 

ϣXY = E[(X−μX)3 (Y−μY)3]  

= E[X 3Y 3 – 3 μX μY X 2Y 2 + 3 μ2
X μ2

Y XY – μ3
X μ3

Y] 

= E[X 3Y 3] – 3 μX μY E[X 2Y 2] + 3 μ2
X μ2

Y E[XY] – μ3
X μ3

Y  

= E[X 3] E[Y 3] – 3 μX μY E[X 2] E[Y 2] + 2 μ3
X μ3

Y  

in terms of the raw moments E[X 3], E[Y 3], E[X 2] and E[Y 2]. 
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Since  

E[X 2] = σ2
X + E2[X] 

and  

E[X 3] = ϣX + 3 μX σ2
X + μ3

X 

this yields 

ϣXY = E[X 3] E[Y 3] – 3 μX μY E[X 2] E[Y 2] + 2 μ3
X μ3

Y  

= (ϣX + 3 μX σ2
X + μ3

X) (ϣY + 3 μY σ2
Y + μ3

Y)  

– 3 μX μY (σ2
X + E2[X]) (σ2

Y + E2[Y]) + 2 μ3
X μ3

Y  

= ϣX ϣY + 3 ϣX μY σ2
Y + 6 μX σ2

X μY σ2
Y  

+ 3 μX σ2
X ϣY + ϣX μ3

Y + μ3
X ϣY 

in terms of the central moments ϣX, ϣY, σ2
X and σ2

Y. 

Since the general skewness is γ1 = ϣX ⁄ σ3
X, the additive and multiplicative properties of the 

third central moment yield expressions for the skewness in decision and risk trees. This skew-

ness is then matched to the B-normal distribution skewness that is later derived from the skew-

normal distribution. 

Skewness of sums (and differences) 

For two random variables X and Y, the skewness of the sum X+Y is 

 

where SX is the skewness of X, S( ) is the coskewness of X and Y, and σX is the standard deviation 

of X. It then follows that the sum of two random variables can be skewed (SX+Y ≠ 0) even if 

both random variables are completely symmetric by themselves (SX = 0 and SY = 0). 

For three random variables X, Y, and Z, the coskewness S(X, Y, Z) is defined as 

 

where E[X] is the expected value of X. Ordinary skewness is a special case of coskewness where 

the three random variables are identical. This is analogous to the variance Var(X) of a random 

variable being the same as the covariance with itself, i.e. Cov(X, X). Thus, the skewness SX = 

S(X, X, X) of a random variable X can be expressed as 

 

For each S( )-term in the formula for SX+Y, the corresponding expression can be derived. For 

example, let R(X, Y, Y) be σXσYσY∙S(X, Y, Y). Then R(X, Y, Y) can be expanded as 

R(X, Y, Y) = E[(X – μX) (Y – μY) (Y – μY)]  

= E[XY 2 – μXY 2 – 2μYXY + 2μXμYY + μY
2X – μXμY

2]. 
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Since E[XY 2] = E[X]E[Y 2] + Cov(X, Y
 2) and E[XY] = E[X]E[Y] + Cov(X, Y), and by the linearity 

of the expectation operator E[ ], R(X, Y, Y) reduces to a combination of covariances. 

R(X, Y, Y) = E[XY 2 – μXY 2 – 2μYXY + 2μXμYY + μY
2X – μXμY

2] 

= E[XY 2] – μXE[Y 2] – 2μYE[XY] + 2μXμY
2 + μY

2E[X] – μXμY
2  

= E[XY 2] – μXE[Y 2] – 2μYE[XY] + 2μXμY
2 + μY

2μX – μXμY
2  

= E[X]E[Y 2] + Cov(X, Y
 2) – μXE[Y 2] – 2μY(E[X]E[Y] + Cov(X, Y)) + 2μXμY

2  

= μXE[Y 2] + Cov(X, Y
 2) – μXE[Y 2] – 2μY(μXμY + Cov(X, Y)) + 2μXμY

2  

= Cov(X, Y
 2) – 2μYCov(X, Y).  

Using the above formula and similar expressions for the other R( )-terms, SX+Y can be computed 

as a sum of covariances, allowing skewness to be propagated and calculated. However, simu-

lations indicate that the dependence effect on skewness (or third central moment) of X+Y or 

XY is negligible and not worth the effort. Thus, it is not included in the NEMO calculus. 

Higher moments 

The fourth standardized moment is defined as 

 

where μ4 is the fourth central moment and σ is the standard deviation. The basic definition of 

kurtosis is 

Kurt(X) = E[X 4] – 3 E2[X 2]. 

Kurtosis is more commonly defined as the fourth cumulant divided by the square of the second 

cumulant 

 

which is also known as excess kurtosis. This formula hints at a kinship between the second and 

fourth moments. However, simulations show that moments higher than three are of little influ-

ence in the BEDA method and are thus not included in the NEMO calculus. 

The B-normal Distribution 

The B-normal distribution method uses a skew-normal distribution defined using Owen’s T and 

adapted to belief use. It expresses the resulting distribution of outcomes of events in the context 

of belief evaluations. The joint distribution of all modelled consequence pairs is approximately 

skew-normally distributed, with the approximation improving as the number of consequences 

increase. The parameters of the distribution are determined by the NEMO calculus where mo-

ments are used to represent properties of the output distributions. The adaptions of skew-nor-

mality to belief use (B-normality) consist of: 

 location and scale parameters to match the expected value and variance with the nor-

mal distribution while maintaining the same skewness  

 interpolated truncation toward the orthogonal hull 

 handling of large skew (γ1 > 0.955), where skew-normality does not hold, by succes-

sive limiting 
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 interpretation of decision and risk trees as PGC situations 

The skewness γ1 of the B-normal distribution depends only on the shape parameter and is sym-

metric about the origin: 

 

The limit of the skewness is finite and depends on the sign of α. The maximum skewness (γ1 ≈ 

0.995272) is obtained by setting δ = 1. The skewness resulting from the B-normal method can 

be larger, though. For example, it is at most γ1 = 1.4 for the product XY where X is uniformly 

distributed and Y is triangular with a = c = 0 and b > 0. Then unmoderated skew-normality 

cannot be used since α cannot be determined from  

.  

The requirement of maintaining the skewness (alignment) yields  

  

where  is the B-skewness from the approximation. The sign of δ is the same as the sign of  

. The shape parameter of the approximation is then  

. 

It can be seen that the B-normal distribution is limited by | δ | < 1 since | α | → ∞ as | δ | → 1. In 

reality, it is limited by | δ | < 0.995037, yielding a maximal | α | of 10, above which the skewness 

is limited. Thus, the practical skewness limit is γ1 ≈ 0.955557. For | α | > 10, the skew-normal 

distribution tends to a half-normal distribution which is not appropriate in belief modelling. 

B-normal Alignment 

To employ the B-normal method, the skewed distribution must be aligned to have the same 

variance and expected value as its unskewed counterpart plus displaying the correct shape 

(skew). The alignment (matching) of the B-normal distribution is done in three steps: 

1. Obtain the correct shape α from the skew γ1 by solving for δ in the formula in the pre-

vious section and substituting δ by α, also from the previous section. 

2. Once the shape α is determined, this changes the variance of the B-normal distribu-

tion. To bring it back to the desired variance σ2, use the formula for the variance from 

the skew-normal section and solve for ω2. 

3. Now, since the shape and variance are determined, the expected value of the distribu-

tion is changed. To bring it back to the desired expected value E(X), use the formula 

for the mean from the skew-normal section and solve for ξ.  

Once the parameters α, ω2 and ξ have been obtained, the B-normal distribution is parametrically 

determined and ready to use. The process is easiest shown with an example. The skew-normal 
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parameters location, scale, and shape correspond to the mean, variance, and skewness of a nor-

mal distribution. The mean of the skew-normal distribution is 

. 

With parameters for location ξ = 0, scale ω = 1, and shape α = 0, a standard normal distribution 

(with mean 0 and standard deviation 1) is obtained: 

 

Start with fixating the desired α, say α = 5. Then δ will change and the mean will also change 

and become positive. To keep the mean at 0 with a positive α, other parameters, e.g. ω, must 

be decreased. The variance is 

. 

Obtain the value of ω by the variance formula: 

 

Then ω should be ≈ 1.605681 (negative or positive). The mean becomes 

 

Thus, the following parameters yield the intended distribution: ξ ≈ ± 1.256269, ω ≈ ± 1.605681 

(the opposite sign of the location) and α = 5. These are the parameters for the B-normal coun-

terpart of a normal distribution with mean 0 and variance 1, but with a skewness introduced 

through α. 

The B-normal CDF 

The cumulative distribution function (CDF) describes the probability that a real-valued random 

variable X with a given probability distribution will be found at a value less than or equal to x.  

For every real number x, the cumulative distribution function of a real-valued random variable 

X is given by 
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where the right-hand side represents the probability that the random variable X takes on a value 

less than or equal to x. The probability that X lies in the interval (a, b], where a < b, is therefore 

 

where (a, b] is a semi-closed interval. 

The CDF of a continuous random variable X can be defined in terms of its probability density 

function ƒ as follows: 

 

Every cumulative distribution function F is (not necessarily strictly) monotone, non-decreasing, 

and right-continuous. Furthermore, 

 

If the CDF F is absolutely continuous, then there exists a Lebesgue-integrable function f(x) such 

that 

 

for all real numbers a and b. The function f is equal to the derivative of F almost everywhere, 

and is the probability density function of the distribution of X. 

In the use of the B-normal distribution, the PGC principle leads to the B-normal approximation 

of the total (joint) multivariate distribution a set of decisions. In the approximation, the tails are 

cut off for values outside the orthogonal hull of the combined random variables and the cumu-

lative distribution function for the tails is interpolated between the cut-off points and the tan-

gents of the B-normal CDF curve instead of a steep truncation as in a truncated skew-normal 

distribution.  

Individual Risk Distributions 

When not much is known about the underlying distribution of an outcome, it is reasonable to 

use a two-point distribution for modelling requiring only upper and lower bounds. But if the 

modal outcome is also known or could be reasonably estimated, then the probability of the 

outcome can be better represented by a three-point distribution. The triangular distribution, 

along with the Beta and Erlang distributions, is therefore widely used in project management 

models (such as PERT) to model events which take place within an interval defined by a mini-

mum and maximum value.  

Simulations have shown that the triangular distribution yields results similar to Beta-PERT in 

general and to Erlang-PERT in particular. Therefore, the triangular distribution can be seen as 

a very good representative of the class of three-point distributions. Thus, the class of two-point 
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distributions is represented by a uniform distribution and a triangular distribution represents the 

class of three-point distributions. Together, they cover a very wide range of modelling needs. 

Uniform Distribution 

The probability density function of the continuous uniform distribution is 

 

The values of f(x) at the two boundaries a and b are unimportant because they do not alter the 

values of the integrals of f(x) dx over any interval, nor of x∙f(x) dx or any higher moment. 

In terms of mean μ and variance σ2, the probability density is 

 

The cumulative distribution function is 

 

The first two moments of the distribution are 

 
and 

 

Due to the shape of the distribution, the skewness is zero. Solving for parameters a and b, given 

known first and second moments E(X) and V(X), yields 

 

 

Triangular Distribution  

The triangular distribution is used as a representative for a class of distributions (three-point 

distributions) commonly used in business management. It is used as a subjective description of 

a population for which there is only limited sample data, and especially in cases where the 

relationship between variables is known but data is scarce (possibly because of the high cost of 
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collection). It is based on best estimates of the minimum and maximum as well as the modal 

value.  

The triangular distribution is a continuous probability distribution with lower limit a, upper 

limit b, and mode c, where a ≤ c ≤ b and a < b. The probability density function is given by 

 

The cumulative distribution function is 

 

Median: 

 

Mean: 

 

Variance: 

 

Skewness (μ3 ⁄ σ
3/2): 

 

Defining t = b – a (range) and q = (c – a) ⁄ t (relative mode within range), the first raw moment 

and the following four central moments can be calculated as 

μ = a + t∙(q + 1) ⁄ 3 

μ2 = t2∙(1 − q + q2) ⁄ 18 

μ3 = t3∙(2 – 3q – 3q2 + 2q3) ⁄ 270 
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μ4 = t4∙(1 − q + q2)2 ⁄ 135 

μ5 = 2t5∙(2 – 3q – 3q2 + 2q3)∙(1 − q + q2) ⁄ 1701 

which simplifies the algorithms. Note that 18 = 2∙32, 135 = 5∙33, 270 = 2∙5∙33 and 1701 = 7∙35 

if the denominators are split into prime factors. 

Note 1: Note that μ5 = 40 μ2 μ3 ⁄ 7. The similarities between the 3rd and 5th central moments 

indicate why the 5th standardised moment is called hyperskewness. The hyperskewness of a 

random variable is its ordinary skewness moderated by its variance. If μ3 = 0 then μ5 = 0. Since 

μ2  0 it follows that μ3 and μ5 have the same sign. For a given skew, high hyperskewness 

corresponds to heavy tails and small movement of mode, while low hyperskewness corresponds 

to larger changes in shoulders.  

Note 2: Further note that μ4 = 12 (μ2)
2 ⁄ 5. These two notes indicate why moments higher than 

three are not used for the determination of B-normality but rather used for checking the fit since 

they add no new information. Their information is already contained in the lower moments. 

Compared with most other three-point distributions, the triangular distribution considers the 

entire interval [a, b] to a larger extent and is thus a better and more consistent companion to the 

two-point uniform distribution in the B-normal method. The statements by the decision-maker 

are interpreted in a more similar way, which adds consistency to the process. The first raw 

moment of many three-point distributions can be written μ1(λ) = (a + b + λc) ⁄ (λ + 2) with the 

triangular distribution having λ = 1 as parameter.1 Beta-PERT usually has λ = 4 and Erlang-

PERT has λ = 3 but various other parameter values, including non-integers, have been suggested 

to represent the user input. In practise, a higher λ value tends to underestimate the uncertainty. 

The underestimation is then amplified through multiplication. The triangular distribution is less 

centre-weighted and thus less prone to underestimation, even if the differences are not large. 

However, there are no compelling reasons to use any three-point distribution other than trian-

gular in belief modelling. 

Dirichlet Distribution 

The Dirichlet distribution is a family of continuous multivariate probability distributions pa-

rameterised by a vector α of positive numbers. It is a multivariate generalisation of the beta 

distribution. The Dirichlet distribution of order K ≥ 2 with parameters α1,...,αK > 0 has a prob-

ability density function given by 

 
where  

 

and bounded by 

 

                                                 
1 The companion two-point uniform distribution has λ = 0. 
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Thus, x1,…,xK belongs to a standard simplex. The normalising constant in the density function 

is the multivariate beta function, which can be expressed in terms of the gamma function 

 

Moments 

Let X be a vector of Dirichlet distributed random variables 

  

and let the first K – 1 components be distributed according to the function above. Then the 

last component is given by  

 

Thus, there is a loss of one degree of freedom (DoF). Let the parameter α0 be 

 

Then the expected value and variance are 

 

Since there is a strong dependency when a DoF is lost, the covariance must also be considered 

in the mass calculations. It can be seen that the covariance is separable, and the subcovariance 

calculation technique mentioned in section 2 can be employed. 

 

More generally, moments of Dirichlet-distributed random variables can be expressed as 

 

Mode 

The mode of the distribution is the vector (x1, ..., xK) with 
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Marginal distributions 

The marginal distributions of Dirichlet are beta distributions 

 

which is why they are important in a software implementation and therefore discussed next. 

Beta Distribution 

The beta distribution is a family of continuous probability distributions defined on [0, 1] and 

parameterised by two shape parameters, α and β, that control the shape of the distribution. The 

probability density function of the beta distribution, for 0 ≤ x ≤ 1 and shape parameters α, β > 0, 

is a power function of the variable x and its reflection (1 − x). 

 

where Γ( ) is the gamma function. The beta function B( ) acts as a normalisation constant to 

ensure that the total probability integrates to 1. 

Mode and expected value 

The mode of a beta distributed random variable X with α, β > 1 is the most likely value of the 

distribution (corresponding to the peak in the pdf) and is given by 

 

The expected value μ of a beta distributed random variable X with two parameters α and β is a 

function of the ratio β / α of these parameters. 
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Variance 

The variance of a beta distributed random variable X with parameters α and β is 

 

The deviation around the mean for the distribution is 

 

It can be approximated as 

 

At the limit α → ∞, β → ∞, the ratio of the mean absolute deviation to the standard deviation 

(for the beta distribution) becomes equal to the ratio of the same measures for the normal dis-

tribution, i.e. (2/π)
½

. This is the same ratio that appears in the B-normal distribution. 

Skewness 

The skewness of the distribution in terms of the shape parameters α and β is 

 

For more straightforward computations, the skewness can instead be expressed in terms of the 

variance var and the mean μ. This simplifies the computations. 

 

This concludes the description of the BEDA method and the implementation phase ensues. 

Summary 

Interval decision analysis often results in overlaps, meaning that even though one alternative 

(A1) has a higher expected value than another (A2) and should be preferred according to the 

principle of maximising the expected value, the best possible variable assignments for alterna-

tive A2 is higher than the worst possible variable assignments for alternative A2. This common 

situation makes it impossible to discard A2 based on reasons of admissibility. In order not to 

end the analysis inconclusively, the DELTA method (Danielson, 1997) employs the concept of 

contraction, in which the intervals are decreased proportionally until all possible variable as-

signments yield A1 having higher expected value than A2, i.e. making A1 admissible. The con-

traction is measured as a percentage such that the original intervals represent 0% and the inter-

vals decreased to singular points represent 100% contraction. The lower the contraction level 
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required to reach admissibility, the more stable the analysis result is. In other words, the con-

traction is a sensitivity analysis of the result. But it has the disadvantage that the contracted 

intervals must be accepted by the decision-maker to represent the original decision situation. 

While a low contraction rate easily makes this possible, higher contraction rates might consti-

tute a different problem formulation than the original one.  

To alleviate this disadvantage, the BEDA method is introduced in this report. It measures the 

belief in each of the input intervals and, based on that information, delivers a measure of belief 

in the output, i.e. in the expected values of the different alternatives analysed. This is done while 

taking the complete input intervals into account, as opposed to the DELTA method that zooms 

in on central sub-intervals. 

To sum up, the BEDA method consists of three steps: 

1. Modelling the belief in the input intervals by assigning belief distributions to them. The dis-

tributions can be, as in this report, Dirichlet/Beta distributions for probabilities and criteria 

weights and triangle or uniform distributions for utilities or values, but other distributions can 

be used if desired. 

2. Through the PGC principle, and thus using the B-normal distribution for the analysis output 

(the expected values), determine the appropriate parameters by employing the NEMO calculus. 

The appropriateness of the selected parameters has been verified through extensive simulations. 

3. Calculate the resulting belief in each alternative by a B-normal calculation. The beliefs can 

be compared by using the difference concepts (delta and gamma) from the DELTA method, 

resulting in belief levels for sets or pairs of alternatives. 
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